袁燕秋

袁燕秋

副教授

研究领域:蛋白质翻译后修饰,包括精氨酸甲基化和糖基化修饰,在疾病中的调控机制以及相关药物干预策略;运用糖基化工程进行抗体改造,开发新一代抗体药物。

联系邮箱: yuanyq8@mail.sysu.edu.cn

简单介绍

袁燕秋,博士,bm11222宝马娱乐网站副教授/博士生导师,中山大学"百人计划"二期引进人才。回国前长期在世界三大药企之一的诺华制药(Novartis)的肿瘤部门担任研究员(Investigator),带领生化团队参与研发多个新型抗癌药物。袁燕秋博士在PNAS, JACS, JMC等期刊上发表多篇论文,目前研究聚焦于蛋白质翻译后修饰,包括精氨酸甲基化和糖基化修饰,相关的生物调控机制、靶标发现和以及药物干预策略;运用糖基化工程进行抗体改造,开发新一代抗体药物。

教育经历

2008年,理学博士,化学与化学生物学系,美国哈佛大学,论文导师: Suzanne Walker

2003年,理学学士,应用化学系, 中国科学技术大学     

工作经历

2017年9月 - 至今              中山大学副教授

2015年1月 - 2017年8月    丹麦哥本哈根大学助理教授

2008年8月 - 2014年12月  美国诺华生物医学研究所(NIBR)研究员   

科研项目

国家自然科学基金委员会, 面上项目, 32271497,蛋白质精氨酸三甲基化修饰的发现、组学及功能探索,2023年01月至 2026年12月,55万元,在研,主持

国家自然科学基金委员会, 青年科学基金项目, 32001044,基于“阅读器亲和富集方法”的精氨酸甲基转移酶PRMT9的特异性底物研究,2021-01-01 至 2023-12-31,24万元,结题,主持

 

论著专利

  1. Wu Y, You Y, Jiang T, He Y, Fan Q, Zeng X, Li T, Lu Y, Qi L, Zhou F, Sun L, Wang D, Zou Y, Zhang G, Yuan Y*, Mao Y*. Proximity  Labeling and Genetic Screening Reveal that DSG2 is a Counter Receptor of Siglec-9 and Suppresses Macrophage Phagocytosis, Advanced Science, 15 January 2025 online.
  2. Zheng J, Wang Q, Chen J, Cai G, Zhang Z, Zou H, Zou J, Liu Q, Ji S, Shao G, Li H, Li S, Chen H, Lu L, Yuan Y*, Liu P*, Wang J*. Tumor mitochondrial oxidative phosphorylation stimulated by the nuclear receptor RORγrepresents an effective therapeutic opportunity in osteosarcoma. Cell Rep. Med. 2024, Apr 24:101519.
  3. Lu L, Ye Z, Zhang R, Olsen JV*, Yuan Y*, Mao Y*. ETD-Based Proteomic Profiling Improves Arginine Methylation Identification and Reveals Novel PRMT5 Substrates. J. Proteome Res.2024, 23:1014-1027. 
  4. Wang S, Ran W, Sun L, Fan Q, Zhao Y, Wang B, Yang J, He Y, Wu Y, Wang Y, Chen L, Chuchuay A, You Y, Zhu X, Wang X, Chen Y, Wang Y, Chen Y-Q, Yuan Y*, Zhao J*, Mao Y*. Sequential Glycosylations at the Multibasic Cleavage Site of SARS-CoV-2 Spike Protein Regulate Viral Activity, Nature Communications2024, 15:4162.
  5. Zhai X, Yuan Y, He W, Wu Y, Shi Y, Su S*, Du Q*, Mao Y*. Evolving roles of glycosylation in the tug-war between virus and host. National Science Review2024https://doi.org/10.1093/nsr/nwae086
  6. Wu C*, Li J, Lu L, Li M, Yuan Y*, Li J*.OGT and OGA: Sweet guardians of the genome. J. Biol. Chem.2024, 300:107141.
  7. Zheng Y, Liang M, Wang B, Kang L, Yuan Y, Mao Y*, Wang S*. GALNT12 is associated with the malignancy of glioma and promotes glioblastoma multiforme in vitro by activating Akt signaling. Biochem. Biophys. Res. Commun.2022, 610:99-106. 
  8. Wang J, Ye X, Yang X, Cai Y, Wang S, Tang J, Sachdeva M, Qian Y, Hu W, Leeds JA, Yuan Y*. Discovery of Novel Antibiotics as Covalent Inhibitors of Fatty Acid Synthesis. ACS Chem. Biol.2020, 15: 1826-1834.
  9. Hu L, Cai X, Dong S, Zhen Y, Hu J, Wang S, Jiang J, Huang J, Han Y, Qian Y*, Yuan Y*, Hu W. Synthesis and Anticancer Activity of Novel Actinonin Derivatives as HsPDF Inhibitors. J. Med. Chem., 2020, 63: 6959-6978.
  10. Wang Y*, Hu W, Yuan Y*. Protein Arginine Methyltransferase 5 (PRMT5) as an Anticancer Target and Its Inhibitor Discovery. J. Med. Chem.201861, 9429-9441. 
  11. Six DA, Yuan Y, Leeds JA, Meredith TC.  Deletion of the β-Acetoacetyl Synthase FabY in Pseudomonas aeruginosa Induces Hypoacylation of Lipopolysaccharide and Increases Antimicrobial Susceptibility. Antimicrob. Agents Chemother.201458, 153-161.
  12. Yuan Y, Sachdeva M, Leeds JA, Meredith TC.  Fatty acid biosynthesis in Pseudomonas aeruginosa is initiated by the FabY class of β-ketoacyl acyl carrier protein synthases. J. Bacteriol.2012194, 5171-5184. 
  13. Yuan Y, Leeds JA, Meredith TC.  Pseudomonas aeruginosa directly shunts β-oxidation degradation intermediates into de novo fatty acid biosynthesis. J. Bacteriol.,2012194, 5185-5196.
  14. Yuan Y, Fuse S, Sliz P, Kahne D, Walker S.  Structural and functional analysis of the H-bonding network that anchors moenomycin in the peptidoglycan glycosyltransferase active site: implications for antibiotic design. ACS Chemical Biology20083, 429-436.
  15. Yuan Y, Barrett D, Zhang Y, Kahne D, Sliz P, Walker S. Crystal structure of a peptidoglycan glycosyltransferase suggests a model for processive glycan chain synthesis. Proc. Natl. Acad. Sci. U. S. A.2007104, 5348-5453.
  16. Yuan Y, Chung HS, Leimkuhler C, Walsh CT, Kahne D, Walker S.  In vitro reconstitution of EryCIII activity for the preparation of unnatural macrolides. J. Am. Chem. Soc.2005127, 14128-14129.
  17. Chen L, Yuan Y, Helm JS, Hu Y, Rew Y, Shin D, Boger DL, Walker S.  Dissecting ramoplanin: mechanistic analysis of synthetic ramoplanin analogues as a guide to the design of improved antibiotics. J. Am. Chem. Soc.2004126, 7462-7463.