冯 敏

冯敏

教授

研究领域:核酸、多肽和蛋白药物传递系统理论与新制剂的研究

办公电话: 020-39943037(o)

联系邮箱: fengmin@mail.sysu.edu.cn

联系方式

办公电话:020-39943073(o)

电子邮箱:fengmin@mail.sysu.edu.cn

办公地址:广州市城外环东路132号bm11222宝马娱乐网站 510006

简介

冯敏,药剂学教授,博士生导师。广东省高等学校“千百十工程”省级培养对象。广东省药学会制药工程专业委员会副主任委员,广东省药学会药剂专业委员会委员,广东省科技项目评审专家库成员。1997年毕业于中国药科大学获学士学位,2001年毕业于中山大学获博士学位。2002-2010年期间先后在新加坡南洋理工大学和美国普渡大学bm11222宝马娱乐网站进行博士后和访问学者研究。2004年任职于bm11222宝马娱乐网站,长期从事药物新剂型与新技术研究,特别是智能药物传递系统理论与新制剂的研究。近年来主持国家自然科学基金、科技部国家高新技术研究发展计划(863计划)和广东省自然科学基金重点项目等10余项,在ACS Nano、Advanced Science、Journal of Controlled Release、Biomaterials、Molecular Pharmaceutics等杂志上发表高水平研究论文60余篇。

研究方向

核酸、多肽和蛋白药物传递系统理论与新制剂的研究

教学情况

本科生课程:药剂学、物理化学、药用高分子与新型给药系统、药物制剂设计与实例

研究生课程:药用高分子材料、药剂学进展

科研项目

  1. 国家自然科学基金:谷氨酰胺驱动大分子药物自传递系统触发溶酶体途径的级联反应式抗非小细胞肺癌的作用与机制研究,主持,起止时间:2019.01-2022.12。
  2. 广州市科技计划:治疗晚期黑色素瘤5-氨基酮戊酸光动力增效制剂的研究,主持,起止时间:2019.01-2021.12。
  3. 广东省自然科学基金重点项目:基于pHLIP纳米载体靶向递送siRNA重塑肿瘤微环境的机制研究,主持,起止时间:2016.01-2019.12。
  4. 国家自然科学基金:基于肿瘤微环境调控的功能转换型杂化多肽聚电解质刷载MDR1 siRNA逆转结肠癌多药耐药性的递送机制研究,主持,起止时间:2014.01-2017.12。
  5. 国家高技术研究发展技术(863计划):药食同源生物资源活性成分高效利用制剂关键技术研究,主持,起止时间:2014.01-2016.12。
  6. 高校基本业务费重大项目培育和新兴、交叉学科项目:靶向肿瘤转移微环境聚氨基酸电解质刷载TGF-β siRNA抗结肠癌肝转移及其递送机制研究,主持,起止时间:2016.01-2018.12。
  7. 国家自然科学基金:嵌合载体纳米粒基因传递系统的构建及在基因搭桥中的作用,主持,起止时间:2007.01-2009.12。
  8. 广东省自然科学基金:聚酰胺-胺纳米粒介导MDR1siRNA逆转结肠癌多药耐药性研究,主持人,起止时间:2012.10-2014.10。
  9. 高校基本业务费青年教师重点培育项目:多功能聚谷氨酰胺聚电解质刷递送siRNA双靶标逆转结肠癌多药耐药性的研究,主持,起止时间:2013.08-2015.08。
  10. 高校基本业务费青年教师培育项目:维生素B12纳米粒口服递送胰岛素及其机制的研究,主持,起止时间:2010.01-2012.12。
  11. 广东省自然科学基金:靶向肺腺癌TK基因转移纳米粒吸入剂的研究,主持人,起止时间:2007.01-2008.12。

论著专利

  1. Guo L, Zhagn Y, Yang Z, Peng H, Wei R, Wang C*, Feng M*. Tunneling nanotubular expressways for ultrafastand accurate M1 macrophage delivery of anticancer drugs to metastatic ovarian carcinoma. ACS Nano. 2019, 26;13: 1078 - 1096
  2. Li Z, Wang C*, Deng H, Sun R, Huang H, Feng M*. Robust photodynamic therapy using 5-ALA incorporated nanocomplexes cures metastatic melanoma through priming of CD4+CD8+ double positive T cells. Adv Sci, 2019, 6:1802057 
  3. Wang C*, Wu J, Wang Z, Yang Z, Li Z, Deng H, Li L, Peng X, Feng M*. Glutamine addiction activates polyglutamine-based nanocarriers delivering therapeutic siRNAs to orthotopic lung tumor mediated by glutamine transporter SLC1A5. Biomaterials. 2018, 183: 77 - 92. 
  4. Wu J, Li Z, Yang Z, Guo L, Zhang Y, Deng H, Wang C*, Feng M*. A glutamine-rich carrier efficiently delivers anti-CD47 siRNA driven by a "glutamine trap" to inhibit lung cancer cell growth. Mol Pharm. 2018, 15: 3032 – 3045
  5. Zhang X, Wang C, Wu J, Liu Y, Yang Z, Zhang Y, Sui X, Li M, Feng M*. An acid-seeking carrier-free drug achieves high antitumor activity via a “solution-particle” transition. J Control Release. 2017, 262: 305 - 316
  6. Zou HJ, Wang ZJ, Feng M*. Nanocarriers with tunable surface properties to unblock bottlenecks in systemic drug and gene delivery. J Control Release. 2015, 214: 121-133
  7. Yin L, Wang Y, Wang C*, Feng M*. Nano-reservoir bioadhesive tablets enhance protein drug permeability across the small intestine. AAPS PharmSciTech. 2017, 18: 2329 – 2335
  8. Wang Z, Zou H, Wang Z, Wu J, Xia Z*,Feng M*. High stable polyglutamiate derivatives/siRNA polyplex efficiently downregulate surviving expression and augment the efficacy of cisplatin. Int J Pharm. 2016, 505: 24-34 
  9. Cao D, Tian S, Yi W, Dai G, Chen J, Feng M*, Pan S*. Nanocomplexes from RGD-modified generatiuon 1.0 polyamidoamine based copolymer sued for intravascular gene release to prevent restenosis. Nanomedicine (Lond). 2016, 11: 359 – 375 
  10. Tian SQ, Cao D, Zou HJ, Bai F, Wang ZJ, Pan S*, Feng M*. Endothelial cell-targeted pVEGF165 polyplex plays a pivotal role in inhibiting intimal thickening after vascular injury. Int J Nanomedicine. 2015, 10: 5751–5768 
  11. Huang H, Cao D, Qin L, Tian S, Liang Y, Pan S*, Feng M*. Dilution-stable PAMAMG1-grafted polyrotaxane supermolecules deliver gene into cells through a caveolae-dependent pathway. Mol. Pharm. 2014, 11: 2323–2333
  12. Feng M, Ibrahim BM, Wilson EW, Doh KO, Bergman BK, Park C, Yeo Y*. Stabilization of a hyaluronate-associated gene delivery system using calcium ions. Biomater Sci. 2014, 2, 936–942
  13. Zhao Y, Qin Y, Liang Y, Zou H, Peng X, Huang H, Lu M, Feng M*. Salt-induced stability and serum-resistance of polyglutamate polyelectrolyte brushes/nuclear factor-κB p65 siRNA polyplex enhance the apoptosis and efficacy of doxorubicin. Biomacromolecules. 2013, 14 (6): 1777–1786
  14. Wen Y, Guo Z, Du Z, Fang R, Wu H, Zeng X, Wang C, Feng M*, Pan S*. Serum tolerance and endosomal escape capacity of histidine-modified pDNA-loaded complexes based on polyamidoamine dendrimer derivatives. Biomaterials. 2012, 33(32):8111-8121
  15. Wang C, Luo X, Zhao Y, Han L, Zeng X, Feng M*, Pan S, Peng H*, Wu C. Influence of the polyanion on the physico-chemical properties and biological activities of polyanion/DNA /polycation ternary polyplexes. Acta Biomater. 2012, 8(8): 3014-3026
  16. Xu M, Zhao Y, Feng M*. Polyaspartamide derivative nanoparticles with tunable surface charge achieve highly efficient cellular uptake and low cytotoxicity. Langmuir. 2012, 28(31): 11310-11318
  17. Deng J, Wen Y, Wang C, Pan S, Gu H, Zeng X, Feng M*, Wu C. Efficient intracellular gene delivery using the formulation c omposed of poly (L-glutamic acid) grafted polyethylenimine and histone. Pharm Res. 2011, 28(4): 812-826
  18. Shen Y, Peng H, Pan SR, Feng M*, Deng J, Wen YT, Luo X, Wu C. Interaction of DNA/nuclear protein/polycation and the terplexes for gene delivery. Nanotechnology. 2010, 21(4): 045102
  19. Pan S*, Cao D, Huang H, Yi W, Qin L, Feng M*. A serum-resistant low-generation polyamidoamine with PEI 423 outer layer for gene delivery vector. Macromol Biosci. 2013,13(4): 422-36
  20. Han L, Zhao Y, Yin L, Li R, Liang Y, Huang H, Pan S, Wu C, Feng M*. Insulin-loaded pH-sensitive hyaluronic acid nanoparticles enhance transcellular delivery. AAPS PharmSciTech. 2012, 13(3): 836-845
  21. Zeng X, Pan S*, Li J, Wang C, Wen Y, Wu H, Wang C, Wu C, Feng M*. A novel dendrimer based on poly (L-glutamic acid) derivatives as an efficient and biocompatible gene delivery vector. Nanotechnology. 2011, 22(37): 375102
  22. Pan S*, Wang C, Zeng X, Wen Y, Wu H, Feng M*. Short multi-armed polylysine-graft-polyamidoamine copolymer as efficient gene vectors. Int J Pharm. 2011, 420(2): 206-215
  23. Wang C, Feng M*, Deng J, Zhao Y, Zeng X, Han L, Pan S, Wu C. Poly (α-glutamic acid) combined with polycation as serum-resistant carriers for gene delivery. Int J Pharm. 2010, 398(1-2): 237-245
  24. Shen Y, Peng H, Deng J, Wen YT, Luo X, Pan SR, Wu CB, Feng M*. High mobility group box 1 protein enhances polyethylenimine mediated gene delivery in vitro. Int. J Pharm. 2009, 375(1-2): 140-147
  25. Shen Y, Deng J, Luo X, Zeng X, Feng M*, Pan S. Synthesis and characterization of sterically stabilized polyelectrolyte using isophorone diisocyanate as the coupling reagent. J Biomat Sci. Polym Ed. 2009, 20(9): 1217-1233
  26. 韩丽娜,尹丽芳,赵月芳,梁扬,黄欢, 冯敏*. 胰岛素/维生素B12-透明质酸纳米粒的制备及口服给药体内外性质的评价. 中山大学学报(医学科学版). 2012, 33(5): 597-602
  27. 沈媛, 彭辉, 冯敏*, 邓晶晶, 温玉婷, 曾昕, 罗昕. 构建HMGB1 /PEI非病毒载体介导高效基因传递的研究.中山大学学报(自然科学版). 2009, 48(5): 91-96
  28. Luo X, Feng M, Pan S*, Wen Y, Zhang W, Wu C. Charge shielding effects on gene delivery of polyethylenimine/DNA complexes: PEGylation and phospholipid coating. J Mater Sci Mater Med. 2012, 23(7): 1685-1695
  29. Li J*, Yang G, Feng M, Liang H, Zhang J, Huang D, Deng S, Shen Y. LDL coating pVEGF/polyethylenimine complex enhances vascular endothelial growth factor expression. Biotech Bioproc Eng. 2012, 17(6):1182-1189
  30. Pan S, Cao D, Yi W, Huang H, Feng M. A biodegradable and serum-resistant gene delivery carrier composed of polyamidoamine-poly N, N-di-(2-aminoethyl) aminoethyl glutamine copolymer. Colloids Surf B Biointerfaces. 2012, 104C: 294-302
  31. Tan Y, Yang Z, Pan X, Chen M, Feng M, Wang L, Liu H, Shan Z, Wu C*. Stability and aerosolization of pressurized metered dose inhalers containing thymopentin nanoparticles produced using a bottom-up process. Int J Pharm. 2012, 427(2): 385-392
  32. Tan Y, Yang Z, Peng X, Xin F, Xu Y, Feng M, Zhao C, Hu H, Wu C*. A novel bottom-up process to produce nanoparticles containing protein and peptide for suspension in hydrofluoroalkane propellants. Int J Pharm. 2011, 413(1-2): 167-173
  33. Luo X, Pan S*, Feng M, Wen Y, Zhang W. Stability of poly(ethylene glycol)-graft -polyethylenimine copolymer/DNA complexes: influences of PEG molecular weight and PEGylation degree. J Mater Sci: Mater Med. 2010, 21(2): 597–607
  34. Guosen H, Feng M, Luo X, Venkatraman S*. Design, synthesis and in vitro evaluation of a novel "stealth" polymeric gene vector. Int J Pharm. 2008, 350(1-2): 344–350
  35. Wen Y, Pan S*, Luo X, Zhang X, Zhang W, Feng M. A biodegradable low molecular weight polyethylenimine derivative as low toxicity and efficient gene vector. Bioconjug Chem. 2009, 20(2): 322-332
  36. Zhang X, Pan SR, Hu HM, Wu GF, Feng M, Zhang W, Luo X. Poly(ethylene glycol)-block –poly ethylenimine copolymers as carriers for gene delivery: Effects of PEG molecular weight and PEGylation degree. J Biomed Mater Res A. 2008, 84(3): 795-804.
  37. Feng M and Li P. Amine-Containing Core-Shell Nanoparticles as Potential Drug Carriers for Intracellular Delivery. J Biomed Mater Res Part A. 2007, 80(1): 184-93
  38. Siu YS, Feng M, Peng X.  Efficient gene delivery using a novel core-shell nanoparticle and HMGB1 system. FASEB J. 2006, 20 (4): A526-A526.
  39. Feng M, Lee D and Li P. Intracellular uptake and release of poly (ethyleneimine) –co- poly (methyl methacrylate) nanoparticle/pDNA complexes for gene delivery. Int J Pharm. 2006, 311(1-2): 209-214.
  40. Pan J, Venkatraman SS, Feng M. Micelle-like nanoparticles of star-branched PEO–PLA copolymers as chemotherapeutic carrier.  J Control Release. 2005, 111(1): 511-524
  41. 31.Venkatraman SS, Pan J, Feng M. Micelle-like nanoparticles of PLA–PEG–PLA triblock copolymer as chemotherapeutic carrier. Int J Pharm. 2005, 298(1): 219-232
  42. 32.Zhu JM, Tang A, Feng M, et al. Amphiphilic Core-Shell Nanoparticles with Poly(ethylenimine) Shells as Potential Gene Delivery Carriers. Bioconjugate Chem.  2005, 16(1): 139-146